Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning

Tytuł:
Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning
Autorzy:
Apostolopoulos, Ioannis D.
Papathanasiou, Nikolaos D.
Panayiotakis, George S.
Data publikacji:
2021
Słowa kluczowe:
lung nodule classification
data augmentation
generative adversarial network
medical image classification
semi-supervised learning
guzki płuc
rozszerzanie danych
klasyfikacja obrazu medycznego
uczenie częściowo nadzorowane
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The pulmonary nodules’ malignancy rating is commonly confined in patient follow-up; examining the nodule’s activity is estimated with the Positron Emission Tomography (PET) system or biopsy. However, these strategies are usually after the initial detection of the malignant nodules acquired from the Computed Tomography (CT) scan. In this study, a Deep Learning methodology to address the challenge of the automatic characterisation of Solitary Pulmonary Nodules (SPN) detected in CT scans is proposed. The research methodology is based on Convolutional Neural Networks, which have proven to be excellent automatic feature extractors for medical images. The publicly available CT dataset, called Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), and a small CT scan dataset derived from a PET/CT system, is considered the classification target. New, realistic nodule representations are generated employing Deep Convolutional Generative Adversarial Networks to circumvent the shortage of large-scale data to train robust CNNs. Besides, a hierarchical CNN called Feature Fusion VGG19 (FF-VGG19) was developed to enhance feature extraction of the CNN proposed by the Visual Geometry Group (VGG). Moreover, the generated nodule images are separated into two classes by utilising a semi-supervised approach, called self-training, to tackle weak labelling due to DC-GAN inefficiencies. The DC-GAN can generate realistic SPNs, as the experts could only distinguish 23% of the synthetic nodule images. As a result, the classification accuracy of FF-VGG19 on the LIDCIDRI dataset increases by +7%, reaching 92.07%, while the classification accuracy on the CT dataset is increased by 5%, reaching 84,3%.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies