Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The Zero of Function and Interpolation by the Method of Hurwitz-Radon Matrices

Tytuł:
The Zero of Function and Interpolation by the Method of Hurwitz-Radon Matrices
Autorzy:
Jakóbczak, D.
Data publikacji:
2012
Słowa kluczowe:
interpolation
method of Hurwitz-Radon Matrices
zero function
interpolacja
metoda Hurwitza-Radona
miejsce zerowe funkcji
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Mathematics need suitable methods to approximate a zero of the function. Coordinate x for f(x)=0 is crucial in a large number of calculations because each equation can be transformed into f(x)=0. A novel method of Hurwitz-Radon Matrices (MHR) can be used in approximation of a root of function in the plane. The paper contains a way of data approximation via MHR method to solve any equation. Proposed method is based on the family of Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal vectors. The operator of Hurwitz-Radon (OHR), built from these matrices, is described. Two-dimensional data are represented by discrete set of curve f points. It is shown how to create the orthogonal OHR operator and how to use it in a process of data interpolation. MHR method is interpolating the curve point by point without using any formula or function.
Matematyka wymaga odpowiednich metod przybliżania miejsca zerowego funkcji. Współrzędna x w równaniu f(x)=0 jest kluczowa w wielu przypadkach, ponieważ dowolne równanie nieliniowe może zostać przedstawione jako f(x)=0. Nowa metoda Macierzy Hurwitza-Radona (MHR) może zostać użyta w rozwiązywaniu dowolnego równania z jedną niewiadomą. Artykuł zawiera sposób przybliżania pierwiastka funkcji. Metoda ta jest oparta na rodzinie macierzy Hurwitza-Radona (HR). Macierze HR są skośno-symetryczne i składają się z kolumn tworzących ortogonalne wektory. W pracy pokazano jak konstruować Operator Hurwitza-Radona (OHR) oraz jak wykorzystać go w procesie rozwiązywania równania. Krzywa płaska opisana jest za pomocą punktów węzłowych. Metoda MHR interpoluje funkcję punkt po punkcie bez użycia wzoru opisującego krzywą.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies