Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Transfer learning techniques for medical image analysis: A review

Medical imaging is a useful tool for disease detection and diagnostic imaging technology has enabled early diagnosis of medical conditions. Manual image analysis methods are labor-intense and they are susceptible to intra as well as inter-observer variability. Automated medical image analysis techniques can overcome these limitations. In this review, we investigated Transfer Learning (TL) architectures for automated medical image analysis. We discovered that TL has been applied to a wide range of medical imaging tasks, such as segmentation, object identification, disease categorization, severity grading, to name a few. We could establish that TL provides high quality decision support and requires less training data when compared to traditional deep learning methods. These advantageous properties arise from the fact that TL models have already been trained on large generic datasets and a task specific dataset is only used to customize the model. This eliminates the need to train the models from scratch. Our review shows that AlexNet, ResNet, VGGNet, and GoogleNet are the most widely used TL models for medical image analysis. We found that these models can understand medical images, and the customization refines the ability, making these TL models useful tools for medical image analysis.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies