Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

lossgrad : Automatic Learning Rate in Gradient Descent

Tytuł:
lossgrad : Automatic Learning Rate in Gradient Descent
Autorzy:
Wójcik, Bartosz
Maziarka, Łukasz
Tabor, Jacek
Data publikacji:
2018
Słowa kluczowe:
gradient descent
optimization methods
adaptive step size
dynamic learning rate
neural networks
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In this paper, we propose a simple, fast and easy to implement algorithm lossgrad (locally optimal step-size in gradient descent), which au- tomatically modifies the step-size in gradient descent during neural networks training. Given a function f, a point x, and the gradient rxf of f, we aim to nd the step-size h which is (locally) optimal, i.e. satisfies: h = arg min t0 f(x 􀀀 trxf): Making use of quadratic approximation, we show that the algorithm satisfies the above assumption. We experimentally show that our method is insensitive to the choice of initial learning rate while achieving results comparable to other methods.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies