Tytuł pozycji:
The Computational Power of Cell-like P Systems with Symport/Antiport Rules and Promoters
Cell-like P systems with symport/antiport rules (CSA P systems, for short) are a class of computational models in membrane computing, inspired by the way of transmembrane transport of substances through membrane channels between neighboring regions in a cell. In this work, we propose a variant of CSA P systems, called cell-like P systems with symport/antiport rules and promoters (CSAp P systems, for short), where symport/antiport rules are regulated by multisets of promoters. The computational power of CSAp P systems is investigated. Specifically, it is proved that CSAp P systems working in the maximally parallel mode, having arbitrary large number of membranes and promoters and using only symport rules of length 1 or antiport rules of length 2, are able to compute only finite sets of non-negative integers. Furthermore, we show that CSAp P systems with two membranes working in a sequential mode when having at most two promoters and using only symport rules of length 2, or having at most one promoter and using symport rules of length 1 and antiport rules of length 2, are Turing universal.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).