Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Zastosowanie symulacji neuronowych oraz nowoczesnych metod geostatystyki w cyfrowej parametryzacji złóż ropy i gazu

Tytuł:
Zastosowanie symulacji neuronowych oraz nowoczesnych metod geostatystyki w cyfrowej parametryzacji złóż ropy i gazu
Autorzy:
Darłak, B.
Malaga, M.
Włodarczyk, M.
Data publikacji:
2006
Słowa kluczowe:
ropa
gaz
metody geostatyczne
metoda sztucznych sieci neuronowych
sztuczne sieci neuronowe
metoda ANN
złoża Różańsko
porowatość
miąższość
oil
gas
geostatistical method
artificial neural network method
ANN method
Różańsko reservoir
porosity
thickness
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Wykonano symulacje rozkładu porowatości efektywnej i miąższości dla złoża Różańsko wykorzystując metody geostatystyczne oraz metodę sztucznych sieci neuronowych. Zastosowano metodę regresji wielokrotnej do estymacji parametrów złożowych (porowatości i miąższości) oraz do stworzenia ich przestrzennych rozkładów, wygenerowanych na podstawie interpretacji wyników pomiarowych sejsmiki 3D, wykonanych na obszarze badanego obiektu. Z drugiej strony zastosowano do obliczeń sieć neuronową typu perceptron wielowarstwowy z algorytmem genetycznym. Stworzono mapy rozkładów symulowanych parametrów i porównano otrzymane wyniki. Stwierdzono, że obie metody dają poprawne wyniki, przy czym metoda sztucznych sieci neuronowych (ANN), będąc metodą szybszą i mniej pracochłonną stawia większe wymagania bazie danych, ze względu na tendencje do wygładzania symulowanych wyników.
Numerical models of Różańsko reservoir were performed using geostatistical and artificial neural network (ANN) methods. The multiple regression method were applied as well for estimations of reservoir parameters extracted from well-log functions as for creation of space distribution of reservoir parameters depending on distributions of appropriate seismic attributes generated on the base of 3-D image of the investigated object. From the other side artificial neural network (ANN) with genetic algorithm were applied. Sketches of porosity and thickness distribution were obtained as a final result. It was showed that both methods give similar results.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies