Tytuł pozycji:
MLP and SVM classifiers for fault detection
The paper presents a comparative analysis of two of the most important neural network classifiers: the multilayer perceptron (MLP) and Support Vector Machine (SVM) in application to diagnostic problems. The structure as well as learning algorithms of both networks have been presented and compared. The results of numerical experiments comparing the performance of both classifiers on the artificial and real life problems are presented and discussed.
Praca przedstawia dwa rozwiązania klasyfikatorów neuronowych na potrzeby diagnostyki. Jednym z nich jest perceptron wielowarstwowy (ang. MultiLayer Perceptron - MLP), drugim sieć wektorów podtrzymujących (ang. Support Vector Machine (SVM). Przedstawiono struktury oraz podstawowe metody uczenia takich sieci. Działania obu klasyfikatorów sprawdzono i porównano na problemach testowych, zarówno typu syntetycznego, jak i problemie rzeczywistym rozpoznawania uszkodzeń elementów w rzeczywistym układzie filtru elektrycznego.