Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Multicentral automorphisms in geometries of circles

We consider three types of geometries of circles (Moebius plane, Laguerre plane and Minkowski plane, cf. [4) with respect to so-called multicentral automorphisms. An automorphism [phi] of any geometry of circles is central if it has a fix point P and [phi] becomes a central collineation in the derived projective plane M(P). For any central automorphism [phi] we try to establish the whole set of points R such that [phi] becomes a central collineation in M(R.). Than [phi] is called multicentral if this set contains at least two points. Moreover, [phi] is proper if existing of a point [R is not equal to P], is not caused by the fact that [phi] is central in M(P). There is no proper multicentral automorphism in a Moebius plane. The most interesting proper multicentral automorphisms are involutorial mappings: double homotheties in Minkowski planes, and (sigma, tau)homologies in Laguerre planes. We give some examples.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies