Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On the extension of certain maps with values in spheres

Let E be an oriented, smooth and closed m-dimensional manifold with m ≥ 2 and V ⊂ E an oriented, connected, smooth and closed (m - 2)-dimensional submanifold which is homologous to zero in E. Let Sn[sup]n-2 ⊂ S[sup]n be the standard inclusion, where S[sup]n is the n-sphere and n ≥ 3. We prove the following extension result: if h : V → S[sup]n-2 is a smooth map, then h extends to a smooth map g : E → S[sup]n transverse to S[sup]n-2 and with g[sup]-1(S[sup]n-2) = V. Using this result, we give a new and simpler proof of a theorem of Carlos Biasi related to the ambiental bordism question, which asks whether, given a smooth closed n-dimensional manifold E and a smooth closed m-dimensional submanifold V ⊂ E, one can find a compact smooth (m + 1)-dimensional submanifold W ⊂ E such that the boundary of W is V.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies