Tytuł pozycji:
Regularization error estimates and discrepancy principle for optimal control problems with inequality constraints
In this article we study the regularization of optimization problems by Tikhonov regularization. The optimization problems are subject to pointwise inequality constraints in L²(Ω). We derive a-priori regularization error estimates if the regularization parameter as well as the noise level tend to zero. We rely on an assumption that is a combination of a source condition and of a structural assumption on the active sets. Moreover, we introduce a strategy to choose the regularization parameter in dependence of the noise level. We prove convergence of this parameter choice rule with optimal order.