Tytuł pozycji:
Image analysis used for aluminium alloy microstructure investigation
Purpose: In this work the metallographic microstructure analysis of the investigated AlSi7Cu3Mg aluminium cast alloy was performed for samples cooled with different cooling rate settings. The preformed investigations are subjected to the analysis of cooling rate influence on the phase morphology. Design/methodology/approach: The solidification process itself is analysed using the UMSA device by appliance of the Derivative Thermo Analysis. The influence of the cooling rate on the alloy microstructure was investigated using computer aided image analysis, in this work also the content of particular phases was analysed, as well the percentage of pinholes compared to the chosen cooling rate. Findings: The treated sample is without holes, cracks and defects as well as has a slightly higher hardness value compared to the as-cast material. Research limitations/implications: The investigated samples were made of the cylindrical shape and were cooled in the range of 0.2°C/s to 1.25°C/s. In this work also the derivative thermoanalysis was performed to determine the correlation between the chosen cooling rate and the microstructure as well changes in the derivative curve shape. For alloy cooling with chosen cooling rate as well for the derivative thermo-analysis the UMSA analysator was applied. Practical implications: The investigated material can find its use in the foundry industry; an improvement of component quality depends mainly on better control over the production parameters. Originality/value: The originality of this work is based on applying of regulated cooling rate of aluminium alloy for structure and mechanical properties changes. As an effect of this study it will be possible to understand and to influence the mechanism of structure forming, refinement and nucleation. Also a better understanding of the thermal characteristics will be provided to achieve a desirable phase morphology required for application of this material under production conditions.