Tytuł pozycji:
The multi-scale FEM simulation of the drawing processes of high carbon steel
Purpose: The influence of cementite lamellas orientation on mechanical and technological properties of wire experimentally show up during investigation of drawing processes with change the direction of drawing between passes. The purpose of this paper is to develop a mathematical model of cementite and ferrite deformation during drawing processes and receive an information about transformation of a pearlitic structure of wire during drawing. Design/methodology/approach: The wire drawing processes was investigated in two levels - using the 2-dimensional rigid-plastic finite element method (macro-level) and modelling of a microstructure change (micro-level). In micro-level the process of deformation of representative volume element (RVE) is considered. The pearlitic colony deformation and stress-strain state in RVE is modelled with help of the FEM. Research limitations/implications: The influence of initial cementite lamellas orientation on triaxity factor and localization of deformation in micro-level is investigated. The numerical simulation is shown a maximal non-uniform deformation of pearlite phases for the canting positions of the cementite lamellas relative the drawing direction. Practical implications: The results of article will be helpful for a fundamental understanding of pearlitic deformation during development of high strength steel wires for tire cord applications. Originality/value: A new model of two-phase grain deformation for wire drawing is proposed. The new conception of simulation of the boundary conditions for the RVE is based on the penalty method and uses a solution of the problem on macro-level.