Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prediction Intervals for Short-Term Load Forecasting Neuro-Fuzzy Models

Tytuł:
Prediction Intervals for Short-Term Load Forecasting Neuro-Fuzzy Models
Autorzy:
Bartkiewicz, W.
Data publikacji:
2012
Słowa kluczowe:
sieci neuronowo-rozmyte
prognozowanie obciążenia
metody
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In the paper the problem of estimation of the prediction intervals (error bars) for the family neuro-fuzzy Short-Term Load Forecasting (STLF) models is discussed. We investigate two neuro-fuzzy networks: Fuzzy Basis Function (FBF) Networks, and linear neuro-fuzzy model with Tagagi-Sugeno reasoning. The paper contains comparison of selected most important methods for error bars calculation (analytical delta method, and bootstrap), and discusses the obtained results in context STLF.
W artykule zaprezentowane zostały metody wyznaczania przedziałów prognozy dla rodziny neuronowo rozmytych modeli krótkoterminowego prognozowania obciążenia sieci. Przebadane zostały dwa rodzaje sieci neuronowo-rozmytych: sieci Fuzzy Basis Function (FBF) i liniowe neuronowe modele rozmyte z wnioskowaniem typu Takagi-Sugeno. Artykuł obejmuje porównanie najistotniejszych metod szacowania przedziałów prognozy: analitycznej metody delta i bootstrapu), dyskutując wyniki w kontekście krótkoterminowych prognoz obciążenia sieci.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies