Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Neural Network Evaluation of Model-Based Residuals in Fault Detection of Time Delay Systems

Tytuł:
Neural Network Evaluation of Model-Based Residuals in Fault Detection of Time Delay Systems
Autorzy:
Zitek, P.
Mankova, R.
Hlava, J.
Data publikacji:
1999
Słowa kluczowe:
wykrywanie błędu
model anizochroniczny
obserwator stanów
sterowanie wewnętrzne
sieć neuronowa
model-based fault detection
anisochronic model
state observer
internal model control
artificial neural networks
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Model-based fault detection becomes rather questionable if a supervised plant belongs to the class of systems with distributed parameters and significant delays. Two methods of fault detection have been developed for this class of plants, namely a method of functional (anisochronic) state observer and a modified internal model control scheme adopted for that purpose. Both these model schemes are employed to generate residuals, i.e. differences suitable to watch whether a malfunction of the control operation has occurred. Continuous evaluation of residuals is provided by means of a dynamic application of artificial neural networks (ANNs). This evaluation is carried out on the basis of prediction of time series evolution, where the accordance obtained between the prediction and measured outputs is used as a classification criterion. Implementation of both the methods is demonstrated on a laboratory-scale heat transfer set-up, making use of the Real-Time Matlab software.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies