Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Zastosowanie algorytmów ewolucyjnych i Metody Elementów Skończonych w optymalizacji korpusów obrabiarek

Tytuł:
Zastosowanie algorytmów ewolucyjnych i Metody Elementów Skończonych w optymalizacji korpusów obrabiarek
Autorzy:
Wilk, P.
Data publikacji:
2011
Słowa kluczowe:
metoda elementów skończonych
korpus obrabiarki
optymalizacja
układ konstrukcyjny
algorytm ewolucyjny
algorytm genetyczny
frezarka
finite elements method
machine tool body
optimization
structural system
evolutionary algorithm
genetic algorithm
milling machine
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Rozwój obrabiarek skrawających zmierzający w kierunku podnoszenia wymagań związanych z dokładnością i wydajnością obróbki pociąga za sobą wzrost parametrów kinematycznych (m. in. prędkość posuwu, prędkość obrotowa wrzeciona, itp.), a co za tym idzie oddziaływań siłowych i cieplnych. Fakt ten stawia konstruktora w sytuacji konieczności stosowania nowoczesnych metod obliczeniowych (np. MES) pozwalających na symulację maszyny poddanej obciążeniom oraz stosunkowo łatwe wariantowanie. W niniejszej rozprawie zaproponowano wprowadzenie do procesu projektowo-konstrukcyjnego obrabiarki metod optymalizacji opartych na algorytmie ewolucyjnym wspomagających proces poszukiwania najkorzystniejszej postaci geometrycznej korpusów. Dzięki temu, na etapie opracowania projektu wstępnego, możliwe jest kształtowanie własności statycznych, dynamicznych oraz cieplnych m.in. korpusów, a co za tym idzie całej obrabiarki. W ramach przeprowadzonych działań opracowano metody pozwalające na dobór parametrów geometrycznych (wymiary i położenie ścian oraz otworów, grubości ścian, itp.) oraz optymalnego rozmieszczenia materiału w obrębie korpusu (optymalizacja topologiczna). Przy czym skupiono się przede wszystkim na problemie redukcji masy, zachowując jednocześnie odpowiednią sztywność statyczną. Jednakże z powodzeniem w procesie optymalizacji można stosować inne kryteria, np. dynamiczne, cieplne, wytrzymałościowe. W wyniku optymalizacji topologicznej otrzymuje się zgrubny model geometryczny o najkorzystniejszym rozmieszczeniu materiału. Stanowi on podstawę do dalszych działań mających na celu opracowanie optymalnej postaci geometrycznej korpusów. Po uszczegółowieniu modelu zaleca się przeprowadzenie doboru parametrów geometrycznych, co pozwala na zbliżenie rozwiązania do optimum globalnego. Niejednokrotnie poprawy własności korpusów dokonuje się bazując na już istniejących rozwiązaniach, korzystając z optymalizacji parametrycznej. Jednakże takie działanie może prowadzić do rozwiązania dalekiego od optimum globalnego. Wynika to z faktu, iż niejednokrotnie wstępna postać geometryczna korpusu jest rezultatem wykorzystania intuicji konstruktora oraz tradycyjnych metod obliczeniowych. Finalnym skutkiem przeprowadzonych działań było opracowanie metodyki optymalizacji korpusów zawierającej liczne wskazówki i zalecenia. Dotyczą one zarówno czynności przygotowawczych, jak również przebiegu procesu doboru najlepszej postaci konstrukcyjnej korpusów.
The development of machine tool, a result of inereasing requirements linked with machining precision and efficiency, has led to an inerease of kinematic parameters, and what follows, an inerease of the impact of various forces as well as heat. Due to this, a designer must use modern calculation methods (Finite Element Method) which allow for the simulation of the machine's behavior under the impact of loads and relatively simple variant estimates. The dissertation contains an introduction to the machining optimization design-construction process based on an evolutionary ałgorithm, which facilitates the process of identifying the best forms of geometrie corpuses. As a result, determining static, dynamic and thermal properties of corpuses and the machine tool is possible during the preliminary design stage. As part of the conducted study a method enabling the selection of geometrie parameters was elaborated (dimensions and layout of walls and holes, as well walls thickness); this includes the optimal placement of materiał within the corpus (topology optimization). Although the emphasis was mainly placed on the problem of mass reduction while maintaining adequate static rigidity, the optimization process can successfully be used with other criteria, i.e. dynamie, thermal, strength parameters. As a result of the topologic optimization a rough geometrie model can be elaborated, with the most favorable material layout. The model becomes the basis for further elaboration of an optimal geometry corpus. Once the model is particularized it is recommended to conduct a selection of geometric parameters, which allows the designer to create a solution close to a global optimum. Often improvement of corpus qualities is conducted based on a preexisting solution with the help of parameter optimization. However, this can lead to a result falling short of the global optimum, as the initial geometrie corpus is often the result of the designer's intuition and traditional calculation methods. The end result of the study was the elaboration of a corpus optimization methodology, which includes multiple suggestions and recommendations. These encompass both preliminary activities, as well as the process of selecting the most advantageous corpus construction.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies