Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Efficient face recognition based on weighted matrix distance metrics and 2DPCA algorithm

Tytuł:
Efficient face recognition based on weighted matrix distance metrics and 2DPCA algorithm
Autorzy:
Rouabhia, C.
Tebbikh, H.
Data publikacji:
2011
Słowa kluczowe:
classification
similarity measure
two-dimensional PCA
weighted matrix distance
human face
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In this paper, a new similarity measure is developed for human face recognition, namely, weighted matrix distance. The key difference between this metric and the standard distances is the use of matrices and weights rather than the vectors only. The two feature matrices are obtained by two-dimensional principal component analysis (2DPCA). The weights are the inverse of the eigenvalues sorted in decreasing order of the covariance matrix of all training face matrices. Experiments are performed under illumination and facial expression variations using four face image databases: ORL, Yale, PF01 and a subset of FERET. The results demonstrate the effectiveness of the proposed weighted matrix distances in 2DPCA face recognition over the standard matrix distance metrics: Yang, Frobenius and assembled matrix distance (AMD).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies