Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Suboptimal Non-linear Predictive Control Based on MLP and RBF Neural Models with Measured Disturbance Compensation

Tytuł:
Suboptimal Non-linear Predictive Control Based on MLP and RBF Neural Models with Measured Disturbance Compensation
Autorzy:
Ławryńczuk, M.
Data publikacji:
2008
Słowa kluczowe:
predictive control
neural networks
linearisation
quadratic programming
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This paper is concerned with a computationally efficient (suboptimal) non-linear Model Predictive Control (MPC) algorithm based on two types of neural models: Multilayer Perceptron (MLP) and Radial Basis Function (RBF) structures. The model takes into account not only controlled but also the uncontrolled input of the process, i.e. the measured disturbance. The algorithm is computationally efficient, because it results in a quadratic programming problem, which can be effectively solved on-line by means of a numerically reliable software subroutine. Moreover, the algorithm gives good closed-loop control performance, comparable to that obtained in the fully-fledged non-linear MPC technique, which hinges on non-linear, usually non-convex optimisation.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies