Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Linear versus nonlinear causality for DAX companies

Tytuł:
Linear versus nonlinear causality for DAX companies
Autorzy:
Gurgul, H.
Lach, Ł.
Data publikacji:
2009
Słowa kluczowe:
spółki DAX
stopy zwrotu
wielkość obrotów
przyczynowość liniowa i nieliniowa
symulacje
DAX companies
stock returns
trading volume
linear and nonlinear causality
simulation
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This study provides empirical evidence of the joint dynamics between stock returns and trading volume using stock data for DAX companies. Our research confirms the hypothesis that traditional linear causality tests often fail to detect some kinds of nonlinear relations, while nonlinear tests do not. In many cases, the test results obtained by use of empirical data and simulation confirm a bidirectional causal relationship, while linear tests did not detect such causality at all.
W badaniach empirycznych, prezentowanych w literaturze a dotyczących zależności pomiędzy wielkością obrotów, stopami zwrotu i ich zmiennością, jest o wiele mniej wyników dotyczących przyczynowości nieliniowej niż liniowej. Naszą pracę wyróżnia spośród innych prac przede wszystkim to, że w artykule są przedstawione nie tylko wyniki z zakresu przyczynowości liniowej, ale i nieliniowej. Stosując testy przyczynowości liniowej i nieliniowej dla giełdy frankfurckiej zbadano, czy znajomość wielkości obrotów może być pomocna w prognozowaniu stóp zwrotu i ich zmienności. Badanie przeprowadzono w trzech wersjach: dla wielkości obrotów z usuniętym trendem, dla oczekiwanej wielkości obrotów i nieoczekiwanej wielkości obrotów. Badania, przeprowadzone zarówno za pomocą testu przyczynowości liniowej, jak i nieliniowej, potwierdzają istnienie przyczynowości od oczekiwanej wielkości obrotów do stóp zwrotu i ich zmienności. Drugim empirycznie stwierdzonym interesującym faktem jest równoczesne występowanie statystycznie istotnej zależności w odwrotnym kierunku. Natomiast w przypadku uwzględnienia w badaniach nieoczekiwanej wielkości obrotów przyczynowości są słabe, a w większości nieistotne statystycznie. Jednakże w przypadku tej wersji wielkości obrotów test nieliniowy wykrywa więcej istotnych wypadków niż test liniowy. W pracy, w celu porównania poprawności wskazań liniowych i nieliniowych testów przyczynowości, przeprowadzono też badania symulacyjne na bazie sześciu wybranych modeli nieliniowych.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies