Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identification of radon anomalies in soil gas using decision trees and neural networks

Tytuł:
Identification of radon anomalies in soil gas using decision trees and neural networks
Autorzy:
Zmazek, B.
Džeroski, S.
Torkar, D.
Vaupotič, J.
Kobal, I.
Data publikacji:
2010
Słowa kluczowe:
radon
soil gas
anomalies
decision tree
artificial neural network
earthquakes
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
The time series of radon (222Rn) concentration in soil gas at a fault, together with the environmental parameters, have been analysed applying two machine learning techniques: (i) decision trees and (ii) neural networks, with the aim at identifying radon anomalies caused by seismic events and not simply ascribed to the effect of the environmental parameters. By applying neural networks, 10 radon anomalies were observed for 12 earthquakes, while with decision trees, the anomaly was found for every earthquake, but, undesirably, some anomalies appeared also during periods without earthquakes.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies