Tytuł pozycji:
On Scott consequence systems
The notion of Scott consequence system (briefly, S-system) was introduced by D.Vakarelov in an analogy to a similar notion given by D. Scott. In part one of the paper we study the category Ssyst of all S-systems and all their morphisms. We show that the category DLat of all distributive lattices and all lattice homomorphisms is isomorphic to a reflective full subcategory of the category Ssyst. Extending the representation theory of D. Vakarelo for S-systems in P-systems, we develop an isomorphism theory for S-systems and for Tarski consequence systems. In part two of the paper we prove that the separation theorem for S-systems is equivalent in ZF to some other separation principles, including the separation theorem for filters and ideals in Boolean algebras and separation theorem for convex sets in convexity spaces.