Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Detecting Irrelevant Subtrees to Improve Probabilistic Learning from Tree-structured Data

Tytuł:
Detecting Irrelevant Subtrees to Improve Probabilistic Learning from Tree-structured Data
Autorzy:
Habrard, A.
Bernard, M.
Sebban, M.
Data publikacji:
2005
Słowa kluczowe:
data reduction
tree structured data
noisy data
stochastic tree automata
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In front of the large increase of the available amount of structured data (such as XML documents), many algorithms have emerged for dealing with tree-structured data. In this article, we present a probabilistic approach which aims at a priori pruning noisy or irrelevant subtrees in a set of trees. The originality of this approach, in comparison with classic data reduction techniques, comes from the fact that only a part of a tree (i.e. a subtree) can be deleted, rather than the whole tree itself. Our method is based on the use of confidence intervals, on a partition of subtrees, computed according to a given probability distribution. We propose an original approach to assess these intervals on tree-structured data and we experimentally show its interest in the presence of noise.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies