Tytuł pozycji:
Narzędzia chemii kombinatorycznej. Cz 3. Reakcje w syntezie organicznej na fazie stałej
Solid Phase Organic Synthesis (SPOS) is a dynamically growing branch of organic synthesis encompusing methods for synthesis of both small molecules and oligomers on solid supports. Synthetically useful organic reactions of substrates immobilized on solid supports constitute a central part of the methodology of solid phase synthesis. This review article presents a representative and fairly comprehensive overview of reactions of supported substrates published till January 2005. The reactions are classified in synthetic terms into functional group interconvertions (FG1, according to type of functional group reacting and prepared) and C-C bond forming reactions (according to reaction type; usually name reaction). Fn particular preparations of halogens, alcohols, ethers, thiols, aldehydes, ketones, acids, esters, amides, phosphines, amines, poliamines, peptides, peptoids, oligonucleotides, and oligosaccharides is covered. Oxidation reactions of alcohols, aldehydes and ketones as well as reduction reactions of aldehydes, ketones, esters, acids, nitro and nitroso compounds are also presented. Only the selected reactions used for preparation of oligonucleotides, oligosaccharides, and polypeptides are covered due to the large volume of literaturę on this topie. The important C-C bond forming reactions such as Mannich, Michael, aldol, Heck, Suzuki, Stille, Sonogashira, Wittig, Horner-Wad-sworth-Emmons, metathesis, carbonyl compound alkylation and acylation reactions are illustrated with examples. Moreover the multicomponent reactions such as Ugi reaction, Hantzsch reaction and Baylis-Hillman reaction are also included in the review. The literature review shows a spectrum of synthetic organic reactions which can be performed on the immobilized substrates and suggests that in principle every reaction could be performed on solid phase. Howeverthe literature review indicates that reactions of polar organometallic reagents, radical reactions, and enantioselective reactions of achiral immobilized substrates are rather rarely used in SPOS.