Tytuł pozycji:
Structure and properties of tool gradient materials reinforced with the WC carbides
Purpose: The purpose of the paper is to describe sintered Tool Gradient Materials manufactured by powder metallurgy process. The Powder Metallurgy method has been chosen to manufacture tool gradient materials with high disproportion of cobalt matrix portion between core and surface layer. Design/methodology/approach: Forming methods were developed during the investigations for tungsten carbide and cobalt, making it possible to obtain materials wits five layers in their structure. Findings: High diversification of cobalt matrix portion in comparison to hard phases in subsequent layers of gradient materials leads to their deformation in as sintered state. In case of all gradient materials, mean hardness was equal about 1750 HV1. Whereas, hardness of lower cobalt matrix rich layers is about 1548 HV1 and increased up to 2154 HV1 for lower layer of material rich with hard carbide phases. The porosity decreases along with the carbon content in these layers. Practical implications: Material presented in this paper is characterized by very high hardness of the surface and relative ductility of core. TGM with a smooth changes of the cobalt phase in the material. Originality/value: The obtained results show the possibility of manufacturing of TGM on basis of different portion of cobalt reinforced with hard ceramics particles carried out in order to improve the abrasion resistance and ductility of tool cutting materials.