Tytuł pozycji:
Structural and mechanical behaviour of TRIP-type microalloyed steel in hot-working conditions
Purpose: The aim of the paper is to investigate the influence of various deformation conditions on microstructure evolution and flow curves of TRIP-type steel. Design/methodology/approach: In order to determine the influence of MX-type interstitial phases on limiting the grain growth of primary austenite, samples were quenched in water from a temperature range, from 900 to 1200*C. Determination of processes controlling strain hardening was carried out in compression test using Gleeble 3800 simulator. The σ-ε curves were defined in a temperature range from 850 to 1150*C, for 0.1, 1 and 10s -1 of strain rate. To determine the progress of recrystallization samples were isothermally held for up to 60 s at 900 and 1000*C. Findings: Profitable impact of TiN and NbC particles on austenite grain growth limitation is present up to 1050*C. The values of flow stress are equal from 120 to 270 MPa. The steel is characterized by quite high values of deformation, εmax=0.4-0.65, corresponding to maximum stress on σ-ε curves. Beneficial grain refinement of primary austenite microstructure can be obtained due to static recrystallization. In temperature of 1000*C, t0.5 is equal 35 s and elongates to 43 s after decreasing deformation temperature to 900*C. The σ-ε curves obtained during multi-stage compression tests confirmed that a process controlling the strain hardening is a dynamical recovery. Research limitations/implications: To design hot-rolling conditions, the analysis of the primary austenite microstructure evolution during successive deformation cycles should be carried out. Practical implications: The obtained precipitation kinetics of MX-type phases and σ-ε curves are useful in determining hot-rolling conditions ensuring the fine-grained microstructure of primary austenite. Originality/value: The determined true stress-true strain curves were obtained for the TRIP-type microalloyed steel containing decreased Si concentration.