Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Externalization of lattices

Tytuł:
Externalization of lattices
Autorzy:
Chajda, I.
Wismath, S.
Data publikacji:
2006
Słowa kluczowe:
kraty
eksternalizacja krat
externally compatible identity
lattice
externalization of lattices
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Let r be a type of algebras. An identity s = t of type r is said to be externally compatible, or simply external, if the terms s and t are either the same variable or both start with the same operation symbol fj of the type. A variety is called external if all of its identities are external. For any variety V , there is a least external variety E(V ) containing V , the variety determined by the set of all external identities of V . External identities and varieties have been studied by [4], [5] and [2], and a general characterization of the algebras in E(V ) has been given in [3]. In this paper we study the algebras of the variety E(V ) where V is the type (2, 2) variety L of lattices. Algebras in L may also be described as ordered sets, and we give an ordered set description of the algebras in E(L). We show that on any algebra in E(L) there is a natural quasiorder having an additional property called externality, and that any set with such a quasiorder can be given the structure of an algebra in E(L). We also characterize algebras in E(L) by an inflation construction.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies