Tytuł pozycji:
Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network
- Tytuł:
-
Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network
- Autorzy:
-
Kurek, Jarosław
Antoniuk, Izabella
Górski, Jarosław
Jegorowa, Albina
Świderski, Bartosz
Kruk, Michał
Wieczorek, Grzegorz
Pach, Jakub
Orłowski, Arkadiusz
Aleksiejuk-Gawron, Joanna
- Data publikacji:
-
2019
- Słowa kluczowe:
-
convolutional neural networks
data augmentation
deep learning
tool condition monitoring
- Język:
-
angielski
- Dostawca treści:
-
BazTech
-
Przejdź do źródła  Link otwiera się w nowym oknie Pełny tekst  Link otwiera się w nowym oknie
This paper presents an improved method for recognizing the drill state on the basisof hole images drilled in a laminated chipboard, using convolutional neural network (CNN) and data augmentation techniques. Three classes were used to describe the drill state: red - for drill that is worn out and should be replaced, yellow - for state in which the system should send a warning to the operator, indicating that this element should be checked manually, and green - denoting the drill that is still in good condition, which allows for further use in the production process. The presented method combines the advantages of transfer learning and data augmentation methods to improve the accuracy of the received evaluations. In contrast to the classical deep learning methods, transfer learning requires much smaller training data sets to achieve acceptable results. At the same time, data augmentation customized for drill wear recognition makes it possible to expand the original dataset and to improve the overall accuracy. The experiments performed have confirmed the suitability of the presented approach to accurate class recognition in the given problem, even while using a small original dataset.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).