Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Analysis on grading of lung nodule images with segmentation using u-net and classification with Convolutional Neural Network Fish Swarm Optimization

Tytuł:
Analysis on grading of lung nodule images with segmentation using u-net and classification with Convolutional Neural Network Fish Swarm Optimization
Autorzy:
Sudha, R.
Uma Maheswari, K.M.
Data publikacji:
2025
Słowa kluczowe:
image segmentation
image classification
U-Net
convolutional neural network
fish swarm optimization
segmentacja obrazu
klasyfikacja obrazu
sieć neuronowa konwolucyjna
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Lung malignant tumors are abnormal growths of cells in the lungs that have the potential to invade nearby tissues and spread to other parts of the body. Early detection of these malignant lung tumors is crucial to avoid complications and improve patient outcomes. However, manual processing consumes time and is a tedious process. This might result in poor estimation on cancer-prognosis, leading the patients into a higher risk of mortality. Many existing literatures have detected the malignant tumors, yet, found certain difficulties with the identification of size, appearance and spread of cancerous-cells in lung region to determine how far it has been occupied. Hence, the present study aims to overcome the existing complications through Deep Learning based Swarm Intelligence Algorithms. Implementation of the proposed work is involved with three stages such as preprocessing, segmentation and classification. Besides, CT scan possess the capability for giving a comprehensive view than X-rays. Data are collected from LIDC-IDRI (Lung Image Database Consortium-Image Database Resource Initiative) with lung CT-images and accomplishes pre-processing by removing noise efficiently using wiener filter. Further, changes in soft tissues of lungs are identified and segmented in the subsequent phase using U-Net and finally classification is performed using CFSO (Convolutional Neural Network Fish Swarm Optimization) to overcome the slight chance of misclassification error as proposed CFSO can lead to more efficient computational processes since FSO algorithms are designed to minimize computational costs while maximizing performance through their metaheuristic nature. This efficiency is particularly beneficial when dealing with large datasets typical in medical imaging, allowing faster processing times without sacrificing accuracy. Hence, amalgamation of CFSO can reduce the number of features, thus speeding up training and inference times. Through the performance assessment, IoU (Intersection over Union) value attained through the analysis is found to be 0.7822. Further, accuracy obtained by the proposed model is 97.80%, recall is 98.49%, precision is 96.8% and F1-score is 97.32%. Findings of the study exhibits the purposefulness of the study in clinical settings by potentially reducing false negatives in lung cancer screening, ultimately improving patient survival rates through earlier detection and treatment.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies