Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Frequency Selection Based Separation of Speech Signals with Reduced Computational Time Using Sparse NMF

Tytuł:
Frequency Selection Based Separation of Speech Signals with Reduced Computational Time Using Sparse NMF
Autorzy:
Varshney, Y. V.
Abbasi, Z. A.
Abidi, M. R.
Farooq, O.
Data publikacji:
2017
Słowa kluczowe:
sparse NMF
non-negative matrix factorisation
mixed speech recognition
machine learning
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Application of wavelet decomposition is described to speed up the mixed speech signal separation with the help of non-negative matrix factorisation (NMF). It is assumed that the basis vectors of training data of individual speakers had been recorded. In this paper, the spectrogram magnitude of a mixed signal has been factorised with the help of NMF with consideration of sparseness of speech signals. The high frequency components of signal contain very small amount of signal energy. By rejecting the high frequency components, the size of input signal is reduced, which reduces the computational time of matrix factorisation. The signal of lower energy has been separated by using wavelet decomposition. The present work is done for wideband microphone speech signal and standard audio signal from digital video equipment. This shows an improvement in the separation capability using the proposed model as compared with an existing one in terms of correlation between separated and original signals. Obtained signal to distortion ratio (SDR) and signal to interference ratio (SIR) are also larger as compare of the existing model. The proposed model also shows a reduction in computational time, which results in faster operation.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies