Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An impact of tensor-based data compression methods on deep neural network accuracy

The emergence of the deep neural architectures greatly influenced the contemporary big data revolution. How-ever, requirements on large datasets even increased a necessity for efficient data storage. The storage problem is present at all stages, from the dataset creation up to the training and prediction stages. However, compression algorithms can significantly deteriorate the quality of data and in effect the classification models. In this article, an in-depth analysis of the influence of the tensor-based lossy data compression on the performance of the various deep neural architectures is presented. We show that the Tucker and the Tensor Train decomposition methods, with properly selected parameters, allow for very high compression ratios, while conveying enough information in the decompressed data to achieve only a negligible or very small drop in the accuracy. The measurements were performed on the popular deep neural architectures: AlexNet, ResNet, VGG, and MNASNet. We show that further augmentation of the tensor decompositions with the ZFP floating-point compression algorithm allows for finding optimal parameters and even higher compressions ratios at the same recognition accuracy. Our experiments show data compressions of 94%-97% that result in less than 1% accuracy drop.
1. This research was co-funded by Smart Growth Operational Programme 2014-2020, financed by European Regional Development Fund, in frame of project POIR.01.01.01-00-0570/19, operated by National Centre for Research and Development in Poland.
2. Preface
3. Session: 15th International Symposium Advances in Artificial Intelligence and Applications
4. Communication Papers

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies