Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Optimized Supervised ML for Medicinal Plant Detection : An FPGA Implementation

Tytuł:
Optimized Supervised ML for Medicinal Plant Detection : An FPGA Implementation
Autorzy:
Raghukumar, Amrutha M.
Narayanan, Gayathri
Somanathan, Geethu Remadevi
Data publikacji:
2024
Słowa kluczowe:
machine learning
GLCM
FPGA
intellectual property
medicinal plants
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Medicinal plants have a huge significance today as it is the root resource to treat several ailments and medical disorders that do not find a satisfactory cure using allopathy. The manual and physical identification of such plants requires experience and expertise and it can be a gradual and cumbersome task, in addition to resulting in inaccurate decisions. In an attempt to automate this decision making, a data set of leaves of 10 medicinal plant species were prepared and the Gray-level Co-occurence Matrix (GLCM) features were extracted. From our earlier implementations of the several machine learning algorithms, the k-nearest neighbor (KNN) algorithm was identified as best suited for classification using MATLAB 2019a and has been adopted here. Based on the confusion matrices for various k values, the optimum k was selected and the hardware implementation was implemented for the classifier on FPGA in this work. An accuracy of 88.3% was obtained for the classifier from the confusion chart. A custom intellectual property (IP) for the design is created and its verification is done on the ZedBoard for three classes of plants.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies