Tytuł pozycji:
Toroidal Algorithms for Mesh Geometries of Root Orbits of the Dynkin Diagram D4
By applying symbolic and numerical computation and the spectral Coxeter analysis technique of matrix morsifications introduced in our previous paper [Fund. Inform. 124(2013)], we present a complete algorithmic classification of the rational morsifications and their mesh geometries of root orbits for the Dynkin diagram 4 The structure of the isotropy group Gl(4, {Z})D4 of D 4 is also studied. As a byproduct of our technique we show that, given a connected loop-free positive edge-bipartite graph Δ, with n ≥ 4 vertices (in the sense of our paper [SIAM J. Discrete Math. 27(2013)]) and the positive definite Gram unit formqΔ ; Zn→Z, any positive integer d ≥ 1 can be presented as d = qΔ(v), with v Є Zn In case n = 3, a positive integer d ≥ 1 can be presented as d = qΔ(v), with v Є Zn , if and only if d is not of the form 4a(16 · b + 14), where a and b are non-negative integers.