Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Position-encoding convolutional network to solving connected text CAPTCHA

Tytuł:
Position-encoding convolutional network to solving connected text CAPTCHA
Autorzy:
Qing, Ke
Zhang, Rong
Data publikacji:
2022
Słowa kluczowe:
deep neural network
position encoding CNN
text-based CAPTCHA recognition
character recognition
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Text-based CAPTCHA is a convenient and effective safety mechanism that has been widely deployed across websites. The efficient end-to-end models of scene text recognition consisting of CNN and attention-based RNN show limited performance in solving text-based CAPTCHAs. In contrast with the street view image and document, the character sequence in CAPTCHA is non-semantic. The RNN loses its ability to learn the semantic context and only implicitly encodes the relative position of extracted features. Meanwhile, the security features, which prevent characters from segmentation and recognition, extensively increase the complexity of CAPTCHAs. The performance of this model is sensitive to different CAPTCHA schemes. In this paper, we analyze the properties of the text-based CAPTCHA and accordingly consider solving it as a highly position-relative character sequence recognition task. We propose a network named PosConv to leverage the position information in the character sequence without RNN. PosConv uses a novel padding strategy and modified convolution, explicitly encoding the relative position into the local features of characters. This mechanism of PosConv makes the extracted features from CAPTCHAs more informative and robust. We validate PosConv on six text-based CAPTCHA schemes, and it achieves state-of-the-art or competitive recognition accuracy with significantly fewer parameters and faster convergence speed.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies