Tytuł pozycji:
Detekcja obiektów z wykorzystaniem probabilistycznych modeli grafowych
Detekcja obiektów na obrazach RGB jest ważnym zagadnieniem w kontekście postrzegania otoczenia przez autonomiczne roboty. W niniejszej pracy zaproponowano i przetestowano nowe podejście do tego problemu. Podejście to łączy wykorzystanie hierarchii części jako kompaktowej reprezentacji modelu obiektu oraz probabilistycznych modeli grafowych jako metody wnioskowania o obecności obiektów. Hierarchia składa się części, które zostały podzielone na warstwy. Każda część jest kompozycją kilku części z niższej warstwy, wyuczoną na podstawie przykładowych obrazów. Części są współdzielone pomiędzy kategoriami obiektów, co znacznie komplikuje proces wnioskowania, lecz daje wiele korzyści. Zaproponowany system może w przyszłości służyć do wspomagania nawigacji robotów mobilnych, a także z nimi współpracować. Skuteczność zaprezentowanego rozwiązania przetestowano na ogólnie dostępnym zbiorze ETHZ Shape Classes .
Object detection on RGB images is an important problem in a context of an environment perception by mobile robots. In this work I proposed and tested a novel approach to this problem. The approach combines an usage of a parts hierarchy as a compact object model representation with an utilization of probabilistic graphical models to infer about objects existence. The hierarchy is build from parts that are organised as layers. Every part is a composition of several lower layer parts, learned on a basis of sample images presenting objects. Parts are shared among object categories, which significantly complicates inference process, but brings multiple benefits. The proposed system may aid navigation systems of mobile robots in the future and cooperate with them. An efficiency of the solution was tested on a publicly available ETHZ Shape Classes dataset.