Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modeling and Parameter Estimation of Radar Sea-Clutter with Trimodal Gamma Population

Tytuł:
Modeling and Parameter Estimation of Radar Sea-Clutter with Trimodal Gamma Population
Autorzy:
Terki, Zakia
Mezache, Amar
Chebbara, Fouad
Data publikacji:
2022
Słowa kluczowe:
CCDF
estimation
least squares
MLE
modeling
trimodal Gamma model
zlog(z)
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Real radar data often consist of a mixture of Gaussian and non-Gaussian clutter. Such a situation creates one or more inflexion points in the curve of the empirical cumulative distributed function (CDF). In order to obtain an accurate fit with sea reverberation data, we propose, in this paper, a trimodal gamma disturbance model and two parameter estimators. The non-linear least-squares (NLS) fit approach is used to avoid computational issues associated with the maximum likelihood estimator (MLE) and moments-based estimator for parameters of the mixture model. For this purpose, a combination of moment fit and complementary CDF (CCDF) NLS fit methods is proposed. The simplex minimization algorithm is used to simultaneously obtain all parameters of the model. In the case of a single gamma probability density function, a zlog(z) method is derived. Firstly, simulated life tests based on a gamma population with different shape parameter values are worked out. Then, numerical illustrations show that both MLE and zlog(z) methods produce closer results. The proposed trimodal gamma distribution with moments NLS fit and CCDF NLS fit estimators is validated to be in qualitative agreement with different cell resolutions of the available IPIX database.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies