Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Computational methods for automated mitosis detection in histopathology images: A review

Tytuł:
Computational methods for automated mitosis detection in histopathology images: A review
Autorzy:
Mathew, Tojo
Kini, Jyoti R.
Rajan, Jeny
Data publikacji:
2021
Słowa kluczowe:
mitosis detection
histopathology
breast cancer grading
deep learning
digital pathology
wykrywanie mitozy
histopatologia
nowotwór piersi
uczenie głębokie
patologia cyfrowa
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Mitosis detection is an important step in pathology procedures in the context of cancer diagnosis and prognosis. Prevalent process for this task is by manually observing Hematox-ylin and Eosin (H & E) stained histopathology sections on glass slides through a microscope by trained pathologists. This conventional approach is tedious, error-prone, and has shown high inter-observer variability. With the advancement of computational technologies, automating mitosis detection by the use of image processing algorithms has attracted significant research interest. In the past decade, several methods appeared in the literature, addressing this problem and they have shown encouraging incremental progress towards a clinically usable solution. Mitosis count is an important parameter in grading of breast cancer and glioma, unlike other cancer types. Driven by the availability of multiple public datasets and open contests, most of the methods in literature address mitosis detection in breast cancer images. This paper is a comprehensive review of the methods published in the area of automated mitotic cell detection in H & E stained histopathology images of breast cancer in the last 10 years. We also discuss the current trends and future prospects of this clinically relevant task, augmenting humanity's fight against cancer.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies