Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Effects of Sample Size, Sample Accuracy and Environmental Variables on Predictive Performance of MaxEnt Model

Tytuł:
Effects of Sample Size, Sample Accuracy and Environmental Variables on Predictive Performance of MaxEnt Model
Autorzy:
Li, Y.
Ding, C.
Data publikacji:
2016
Słowa kluczowe:
sample size
sample accuracy
environmental factors
potential distribution
MaxEnt model
Crossoptilon mantchuricum
China
rozmiar próbki
dokładność próby
czynniki środowiskowe
potencjał dyslokacji
model MaxEnt
uszak brunatny
bażantowate
Chiny
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The availability of sample data, together with detailed environmental factors, has fueled a rapid increase in predictive modeling of species geographic distributions and environmental requirements. We founded that MaxEnt model has provided different descriptions of potential distributions based on different sample size, sample accuracy and environmental background. We used six combinations based on three sample data set and two kinds of environmental variables to estimate the potentially suitable areas of Brown Eared Pheasant (Crossoptilon mantchuricum) in MaxEnt model. The results show that the complex variables provided the higher AUC value and accurate potential distribution than simple variables based on the same size of samples. Complicated environmental factors combined with moderate size and accurate sample, can predict better results. The model results were scabrous based on simple environmental factors. Furthermore, big sample size and simple prediction environmental factors will reduce the prediction accuracy, whereas small samples provided a conservative description of ecological niche. Here, we highlighted that considering the big size and high accuracy of sample and many environmental factors of a species to minimize error when attempting to infer potential distributions from current data in MaxEnt model.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies