Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images

Tytuł:
Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images
Autorzy:
Raghavendra, U.
Bhandary, S. V.
Gudigar, A.
Acharya, U. R.
Data publikacji:
2018
Słowa kluczowe:
computer aided diagnosis
GIST descriptor
glaucoma
support vector machine
Radon transform
komputerowe wspomaganie diagnostyki
jaskra
maszyna wektorów wspierających
transformata Radona
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Glaucoma is the prime cause of blindness and early detection of it may prevent patients from vision loss. An expert system plays a vital role in glaucoma screening, which assist the ophthalmologists to make accurate decision. This paper proposes a novel technique for glaucoma detection using optic disk localization and non-parametric GIST descriptor. The method proposes a novel area based optic disk segmentation followed by the Radon transformation (RT). The change in the illumination levels of Radon transformed image are compensated using modified census transformation (MCT). The MCT images are then subjected to GIST descriptor to extract the spatial envelope energy spectrum. The obtained dimension of the GIST descriptor is reduced using locality sensitive discriminant analysis (LSDA) followed by various feature selection and ranking schemes. The ranked features are used to build an efficient classifier to detect glaucoma. Our system yielded a maximum accuracy (97.00%), sensitivity (97.80%) and specificity (95.80%) using support vector machine (SVM) classifier with nineteen features. Developed expert system also achieved maximum accuracy (93.62%), sensitivity (87.50%) and specificity (98.43%) for public dataset using twenty six features. The proposed method is efficient and computationally less expensive as it require only nineteen features to model a classifier for the huge dataset. Therefore the proposed method can be effectively utilized in hospitals for glaucoma screening.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies