Tytuł pozycji:
Effect of deformation temperature and strain rate on compressive behavior of laminated aluminum bronze-intermetallic composites
Laminated composites were produced by reactive bonding using CuAl10Fe3Mn2 bronze and titanium foils with thicknesses of 0.6 and 0.1 mm, respectively. To obtain the composite sample five foils of bronze and four of titanium were used. During fabrication, the titanium layers reacted completely and formed intermetallics (Ti2Cu, TiCuAl and TiCu2Al). In order to investigate the compressive behavior of the laminated CuAl10Fe3Mn2-intermetallic composites, isothermal compression tests were conducted at the temperatures of 20, 600 and 800°C with two different strain rates of 1·10-3 s-1 and 2.9·10-3 s-1. The thickness of all the specimens was reduced by 50%. During the compression tests delamination of the layers of the composites was not observed. With an increase in the investigation temperature the yield strength of the composites decreased significantly. The results showed that the deformation temperature and the strain rate were equally responsible for the evolution of deformation during isothermal compression. The most favorable compressive deformation conditions necessary to shape the laminated CuAl10Fe3Mn2-intermetallic phases composites without damaging their layers were determined experimentally.
Wytworzono kompozyty warstwowe z foli z brązu aluminiowego CuAl10Fe3Mn2 o grubości 0,6 mm oraz z foli tytanowej o grubości 0,1 mm. W celu uzyskania kompozytu zastosowano pięć folii z brązu i cztery z tytanu. Podczas reakcji syntezy warstwy tytanu całkowicie przereagowały i powstały fazy międzymetaliczne (Ti2Cu, TiCuAl i TiCu2Al). W celu przeanalizowania mechanizmu deformacji podczas ściskania kompozytów przeprowadzono testy w temperaturze 20, 600 i 800°C, stosując dwie różne prędkości odkształcania: 1·10-3 s-1 oraz 2,9·10-3 s-1. Próby prowadzono do uzyskania 50% redukcji grubości. Podczas prób ściskania nie zaobserwowano delaminacji warstw kompozytu. Stwierdzono znaczny spadek granicy plastyczności kompozytów wraz ze wzrostem temperatury badania. Wyniki pokazały, że zarówno temperatura, jak i prędkość odkształcania miały wpływ na mechanizm deformacji. Eksperymentalnie określono optymalne parametry procesu odkształcania kompozytu CuAl10Fe3Mn2-fazy międzymetaliczne pozwalające na jego kształtowanie bez niszczenia warstw.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).