Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Gray-level co-occurrence matrix of Smooth Pseudo Wigner-Ville distribution for cognitive workload estimation

Tytuł:
Gray-level co-occurrence matrix of Smooth Pseudo Wigner-Ville distribution for cognitive workload estimation
Autorzy:
Mirzaeian, Rezvan
Ghaderyan, Peyvand
Data publikacji:
2023
Słowa kluczowe:
electrodermal activity
textural features
cascade forward neural network
recurrent neural network
aktywność elektrodermalna
cecha tekstury
sieć neuronowa rekurencyjna
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Automatic, cost-effective, and reliable cognitive workload estimation (CWE) is one of the important issues in diagnosis and treatment of neurocognitive diseases, cognitive performance improvement and error preventive strategies. To address this issue, this paper has proposed a novel and robust CWE method by detecting the time–frequency (TF) changes of electrodermal activities (EDA). Firstly, the local and global properties of the time-variant characteristics of EDA have been presented using Smooth Pseudo WignerVille distribution with enhanced TF resolution. Then, the transient changes in TF images of EDA signals have been quantified using a set of textural features based on Gray Level Co-occurrence Matrix descriptor (GLCM). Several static and dynamic classifiers, such as support vector machine, K- k-nearest neighbor, cascade forward neural network, and recurrent neural network have been explored. A real EDA data experiment recorded during arithmetic task with different workload levels have been used to evaluate the performance of the proposed method. The obtained results have confirmed that it can achieve a high estimation performance of 97.71% using contrast feature for discrimination of three workload levels. Further analysis has also suggested that the model is robust to GLCM parameters and classifiers and can provide a better tradeoff between computational complexity and high performance using minimum number of textural features in comparison with previous studies.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies