Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

DefenseFea: An Input Transformation Feature Searching Algorithm Based Latent Space for Adversarial Defense

Tytuł:
DefenseFea: An Input Transformation Feature Searching Algorithm Based Latent Space for Adversarial Defense
Autorzy:
Pan, Zhang
Yangjie, Cao
Chenxi, Zhu
Yan, Zhuang
Haobo, Wang
Jie, Li
Data publikacji:
2024
Słowa kluczowe:
adversarial attacks
adversarial defense
latent space
adversarial training
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Deep neural networks based image classification systems could suffer from adversarial attack algorithms, which generate input examples by adding deliberately crafted yet imperceptible noise to original input images. These crafted examples can fool systems and further threaten their security. In this paper, we propose to use latent space protect image classification. Specifically, we train a feature searching network to make up the difference between adversarial examples and clean examples with label guided loss function. We name it DefenseFea (input transformation based defense with label guided loss function), experimental result shows that DefenseFea can improve the rate of adversarial examples that achieved a success rate of about 99% on a specific set of 5000 images from ILSVRC 2012. This study plays a positive role in the further investigation of the relationship between adversarial examples and clean examples.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies