Tytuł pozycji:
Tiered Objects
We investigate the foundations of reasoning over infinite data structures by means of set-theoretical structures arising in the sheaf-theoretic semantics of higher-order intuitionistic logic. Our approach focuses on a natural notion of tiering involving an operation of restriction of elements to levels forming a complete Heyting algebra. We relate these tiered objects to final coalgebras and initial algebras of a wide class of endofunctors of the category of sets, and study their order and convergence properties. As a sample application, we derive a general proof principle for tiered objects.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).