Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Bernstein operational matrix of differentiation and collocation approach for a class of three-point singular BVPs: error estimate and convergence analysis

Tytuł:
Bernstein operational matrix of differentiation and collocation approach for a class of three-point singular BVPs: error estimate and convergence analysis
Autorzy:
Sriwastav, Nikhil
Barnwal, Amit K.
Wazwaz, Abdul-Majid
Singh, Mehakpreet
Data publikacji:
2023
Słowa kluczowe:
Bernstein polynomials
collocation method
three-point singular BVPs
convergence analysis
error estimate
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Singular boundary value problems (BVPs) have widespread applications in the field of engineering, chemical science, astrophysics and mathematical biology. Finding an approximate solution to a problem with both singularity and non-linearity is highly challenging. The goal of the current study is to establish a numerical approach for dealing with problems involving three-point boundary conditions. The Bernstein polynomials and collocation nodes of a domain are used for developing the proposed numerical approach. The straightforward mathematical formulation and easy to code, makes the proposed numerical method accessible and adaptable for the researchers working in the field of engineering and sciences. The priori error estimate and convergence analysis are carried out to affirm the viability of the proposed method. Various examples are considered and worked out in order to illustrate its applicability and effectiveness. The results demonstrate excellent accuracy and efficiency compared to the other existing methods.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies