Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Predykcja stanu kanału z wykorzystaniem ukrytych Modeli Markowa w sieciach radia kognitywnego

Tytuł:
Predykcja stanu kanału z wykorzystaniem ukrytych Modeli Markowa w sieciach radia kognitywnego
Autorzy:
Bednarczyk, W.
Gajewski, P.
Data publikacji:
2016
Słowa kluczowe:
HMM
predykcja
Radio kognitywne
Ukryte Modele Markowa
Cognitive radio
hidden Markov model
prediction
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Predykcja stanu kanału, czyli oszacowanie prawdopodobieństwa, czy kanał będzie wolny, czy zajęty, pozwala na skuteczniejsze zarządzanie widmem w sieciach radia kognitywnego. W artykule przedstawiono ocenę zastosowania ukrytych modeli Markowa do predykcji stanu kanału radiowego, na podstawie oszacowania prawdopodobieństwa poprawnej i fałszywej detekcji. Uzyskane prawdopodobieństwo predykcji stanu kanału potwierdza potencjalne możliwości modelu dla sieci radia kognitywnego z oportunistycznym dostępem do widma.
Cognitive radio (CR) networks can be designed to manage the radio spectrum more efficiently by utilizing of temporarily not used channels in licensed frequency bands. In this paper, we propose to use so called Hidden Markov Models (HMM) to predict the spectrum occupancy of sharing radio bands. The results obtained using HMM are very promising and they show that HMM offer a new paradigm for predicting channel behavior in cognitive radio.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies