Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Limit theory for planar Gilbert tessellations

Tytuł:
Limit theory for planar Gilbert tessellations
Autorzy:
Schreiber, T.
Soja, N.
Data publikacji:
2011
Słowa kluczowe:
Gilbert crack tessellation
stabilizing geometric functionals
central limit theorem
law of large numbers
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
A Gilbert tessellation arises by letting linear segments (cracks) in R2 unfold in time with constant speed, starting from a homogeneous Poisson point process of germs in randomly chosen directions. Whenever a growing edge hits an already existing one, it stops growing in this direction. The resulting process tessellates the plane. The purpose of the present paper is to establish a law of large numbers, variance asymptotics and a central limit theorem for geometric functionals of such tessellations. The main tool applied is the stabilization theory for geometric functionals.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies