Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Isoperimetric inequalities in nonlocal diffusion problems with integrable kernel

Tytuł:
Isoperimetric inequalities in nonlocal diffusion problems with integrable kernel
Autorzy:
Galiano, Gonzalo
Data publikacji:
2024
Słowa kluczowe:
nonlocal diffusion
Schwarz’s symmetrization
Talenti’s theorem
Riesz’s inequality
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
We deduce isoperimetric estimates for solutions of linear stationary and evolution problems. Our main result establishes the comparison in norm between the solution of a problem and its symmetric version when nonlocal diffusion defined through integrable kernels is replacing the usual local diffusion defined by a second order differential operator. Since an appropriate kernel rescaling allows to define a sequence of solutions of the nonlocal diffusion problems converging to their local diffusion counterparts, we also find the corresponding isoperimetric inequalities for the latter, i.e. we prove the classical Talenti’s theorem. The novelty of our approach is that we replace the measure geometric tools employed in Talenti’s proof, such as the geometric isoperimetric inequality or the coarea formula, by the Riesz’s rearrangement inequality. Thus, in addition to providing a proof for the nonlocal diffusion case, our technique also introduces an alternative proof to Talenti’s theorem.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies