Tytuł pozycji:
A contribution on real and complex convexity in several complex variables
Let f, g : Cn → C be holomorphic functions. Define u(z, w) = |w − f (z)|4 + |w − g(z)|4, v(z, w) = |w − f (z)|2 + |w − g(z)|2, for (z, w) ∈ Cn × C. A comparison between the convexity of u and v is obtained under suitable conditions. Now consider four holomorphic functions φ1, φ2 : Cm → C and g1, g2 : Cn → C. We prove that F = |φ1 − g1|2 + |φ2 − g2|2 is strictly convex on Cn × Cm if and only if n = m = 1 and φ1, φ2, g1, g2 are affine functions with (φ′1g′2 − φ′2g′1)̸ = 0. Finally, it is shown that the product of four absolute values of pluriharmonic functions is plurisubharmonic if and only if the functions satisfy special conditions as well.