Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A contribution on real and complex convexity in several complex variables

Let f, g : Cn → C be holomorphic functions. Define u(z, w) = |w − f (z)|4 + |w − g(z)|4, v(z, w) = |w − f (z)|2 + |w − g(z)|2, for (z, w) ∈ Cn × C. A comparison between the convexity of u and v is obtained under suitable conditions. Now consider four holomorphic functions φ1, φ2 : Cm → C and g1, g2 : Cn → C. We prove that F = |φ1 − g1|2 + |φ2 − g2|2 is strictly convex on Cn × Cm if and only if n = m = 1 and φ1, φ2, g1, g2 are affine functions with (φ′1g′2 − φ′2g′1)̸ = 0. Finally, it is shown that the product of four absolute values of pluriharmonic functions is plurisubharmonic if and only if the functions satisfy special conditions as well.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies