Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Adaptive Differential Evolution with Elite Opposition-Based Learning and its Application to Training Artificial Neural Networks

Tytuł:
Adaptive Differential Evolution with Elite Opposition-Based Learning and its Application to Training Artificial Neural Networks
Autorzy:
Choi, Tae Jong
Lee, Jong-Hyun
Youn, Hee Yong
Ahn, Chang Wook
Data publikacji:
2019
Słowa kluczowe:
artificial neural networks
differential evolution algorithm
feed-forward neural network
neural network training
opposition-based learning
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Differential Evolution (DE) algorithm is one of the popular evolutionary algorithms that is designed to find a global optimum on multi-dimensional continuous problems. In this paper, we propose a new variant of DE algorithm by combining a self-adaptive DE algorithm called dynNP-DE with Elite Opposition-Based Learning (EOBL) scheme. Since dynNP-DE algorithm uses a small number of population size in the later of the search process, the population diversity becomes low, and therefore premature convergence may occur. We have therefore extended an OBL scheme to dynNP-DE algorithm to overcome this shortcoming and improve the optimization performance. By combining EOBL scheme to dynNP-DE algorithm, the population diversity can be supplemented because not only the information of individuals but also their opposition information can be utilized. We measured the optimization performance of the proposed algorithm on CEC 2005 benchmark problems and breast cancer detection, which is a research field that has recently attracted a lot of attention. It was verified that the proposed algorithm could find better solutions than five state-of-the-art DE algorithms.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies