Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine

Diabetes mellitus (DM) is one of the most widespread and rapidly growing diseases. With its advancement, DM-related complications are also increasing. We used characteristic features of toe photoplethysmogram for the detection of type-2 DM using support vector machine (SVM). We collected toe PPG signal, from 58 healthy and 83 type-2 DM subjects. From each PPG signal 37 different features were extracted for further classification. To improve the performance of SVM and reduce the noisy data we employed hybrid feature selection technique that reduces the feature set of 37 to 10 on the basis of majority voting. Using 10 selected features set, we gained an accuracy of 97.87%, sensitivity of 98.78% and specificity of 96.61%. Further for the validation of our method we need to do random population test, so that it can be used as a non-invasive screening tool. Photoplethysmogram is an economic, technically easy and completely non-invasive method for both physician and subject. With the high accuracy that we obtained, we hope that our work will help the clinician in screening of diabetes and adopting suitable treatment plan for preventing end organ damage.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies