Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Finite Element Modelling of Titanium Aluminides

Tytuł:
Finite Element Modelling of Titanium Aluminides
Autorzy:
Sizova, I.
Sviridov, A.
Günther, M.
Bambach, M.
Data publikacji:
2017
Słowa kluczowe:
titanium aluminide alloy
hot forming
flow stress
dynamic recrystallization
modeling
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Hot forging is an important process for shaping and property control of lightweight titanium aluminide parts. Dynamic recrystallization and phase transformations play an essential role for the resulting grain size and accordingly the mechanical properties. Due to the fact that titanium aluminides require forging under isothermal conditions, reliable process modeling is needed to predict the microstructure evolution, to optimize the process time and to avoid excessive die loads. In the present study an isothermal forging process of a compressor blade made of TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B, at. %) is modeled using the Finite Element (FE) – Software Q-Form. A microstructure model describing the microstructure evolution during forging is presented. To calibrate the model, the high-temperature deformation behavior was investigated using isothermal compression tests. The tests were carried out at temperatures from 1150°C to 1300°C, applying strain rates ranging from 0.001s-1 to 0.5s-1, up to a true strain of 0.9. The experimentally determined flow stress data were described with model equations determined form the course of the strain hardening rate in Kocks-Mecking plots. An isothermal forging process of a compressor blade was carried out and used to validate the results from the FE simulations.
Plastyczna przeróbka na gorąco jest ważnym procesem po-zwalającym nadawać kształt i kontrolować własności wyrobów z glinków tytanu. Dynamiczna rekrystalizacja i przemiany fazowe odgrywają kluczową rolę w kształtowaniu końcowej wielkości ziarna i, w konsekwencji, własności mechanicznych wyrobu. Ponieważ glinki tytanu wymagają kucia w warunkach izotermicznych, potrzebny jest dokładny model rozwoju mikrostruktury aby umożliwić optymalizację czasu trwania procesu i aby uniknąć przeciążenia matryc. W niniejszej pracy proces kucia łopatki kompresora został zamodelowany metodą elementów skończonych (MES) z wykorzystaniem programu Q-Form. Badanym materiałem był stop TNB-V4 (Ti—44.5Al-6.25Nb-0.8Mo-0.IB, at. %). W pracy przedstawiono zastosowany model rozwoju mikrostruktury. Model został skalibrowany na podstawie wyników prób ściskania na gorąco w warunkach izotermicznych. Badania przeprowadzono w temperaturach w zakresie 1150°C - 1300°C i dla prędkości odkształcenia w zakresie 0.001 s"1 d 0.5 s' . Całkowite odkształcenie w tych próbach wynosiło 0.9. Wyznaczone doświadczalnie naprężenie uplastyczniające zostało opisane za pomocą prędkości umocnienia zgodnie z krzywymi Kocksa-Meckinga. Fizyczny proces kucia łopatki kompresora został wykorzystany do walidacji modelu MES.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies