Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Feed-forward artificial neural network as surrogate model to predict lift and drag coefficient of NACA airfoil and searching of maximum lift-to-drag ratio

Tytuł:
Feed-forward artificial neural network as surrogate model to predict lift and drag coefficient of NACA airfoil and searching of maximum lift-to-drag ratio
Autorzy:
Kieszek, Rafał
Majcher, Maciej
Syta, Borys
Kozakiewicz, Adam
Data publikacji:
2024
Słowa kluczowe:
Artificial Neural Network
ANN
NACA airfoil
optimization
surrogate model
model reduction
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
The problem of computation time in numerical calculations of aerodynamics has been studied by many research centres. In this work, a feed forward artificial neural network (FF-ANN) was used to determine the dependence of lift and drag coefficients on the angle of attack for NACA four-digit families. A panel method was used to generate the data needed to train the FF-ANNs. Optimisation using a genetic algorithm and a neural metamodel resulted in a non-standard NACA aerofoil for which the optimal angle of attack was determined with a maximum L/D ratio. The optimisation results were validated using the finite volume method.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies